
iflex: A Lexical Analyzer Generator for Icon

Ray Pereda
Unicon Technical Report UTR-02

February 25, 2000

Abstract

iflex is software tool for building language processors. It is based on
flex, a well-known tool for the C programming language. This paper
describes the experienced gained in creating iflex and a brief description
of how to use the tool.

The University of Nevada, Las Vegas
Department of Computer Science
Las Vegas, Nevada 89154, USA

 2

1. Introduction

Building a language processor such as a compiler is a complex task. Parsing
is the extraction of the grammatical structure of a sentence in some
language. The first step in parsing is extracting the lexical items or “words”
in a sentence. iflex is tool for doing just that, i.e. scanning, or also known
more formally as lexical analysis.

If this report is your first lex, you may wish to also read “Lex & Yacc,” by
[Levine92]. Also, the book by [Jeffery00] has a chapter on iflex. iyacc, the
companion program for iflex is documented in [Pereda00].

The name of the iflex tool stands for Icon Lexical Analyzer. It was created
by modifying a program called flex to generate Icon code as an alternative to
C. Flex documented in [Paxson92]. The flex program in turn is based on a
classic UNIX program called lex that dates back to 1975. Lex is documented
in [Lesk75]. The iflex tool takes a lexical specification and produces a
lexical analyzer that corresponds to that specification. A lexical analyzer is a
fancy name for a scanner, and the lexical analyzer generated by iflex is
simply a procedure named yylex(). The specification of the lexical structure
of many languages can be concisely and precisely stated using this notation.
You only need to know the basics of regular expressions to get a useful
understanding of them. The iflex tool specifications consist of a list of
regular expressions.

2. Example #1, A Word Count Program

There is a UNIX program called wc, short for word count, that counts
newlines, words, and characters in a file. In this section, you will see how to
build such a program using iflex. A short, albeit simplistic, definition of a
word is any sequence of non-white space characters. White space characters
are blanks and tabs. Below is a complete iflex
program that operates like wc:

ws [\t]
nonws [^ \t\n]
%{
global cc, wc, lc
%}
%%
{nonws}+ cc +:= yyleng; wc +:= 1

 3

{ws}+ cc +:= yyleng
\n lc +:= 1; cc +:= 1
%%
procedure main()
 cc := wc := lc := 0
 yylex()
 write(right(lc, 8), right(wc, 8), right(cc, 8))
end

All iflex programs, including this program, consist of three sections,
separated by lines containing two percent signs. The three sections are the
definitions section, the rulessection, and the procedures section. In the word
count program, the definitions section has two definitions, one for white
space (ws) and one for non-white space (nonws). These definitions are
followed by code to declare three global variables, which will be used as
counters. The variables cc, wc, and lc are used to count the characters,
words, and lines, respectively. The rules section in this example contains
three rules. White space, words, and newlines each have a rule that matches
and counts their occurrences. The procedure section has one procedure,
main(). It calls the lexical analyzer and then prints out the counts. There are
many ways to write this word count program, with different performance
characteristics. If speed is your primary consideration you can look in the
documentation for flex to get five progressively more complex but faster
versions of word count. The documentation is available on the Internet, just
search for flex and Vern Paxson, the author.

3. Example #2, A Lexical Analyzer for a Desktop Calculator

The above example illustrates using iflex to write standalone programs, but
the function yylex() produced by iflex is usually called by a parser
algorithm. The yylex()function can be used to produce a sequence of words,
and a parser such as that generated by the iyacc program combines those
words into sentences. So it makes sense to study how iflex is used in this
typical context. One obvious difference is that in the earlier example, yylex()
was only called once to process an entire file; in contrast, when a parser uses
yylex() it calls it repeatedly, and yylex() returns with each word that it finds.
You will see this in the following example. A calculator program is simple
enough to understand in one sitting and complex enough to get a sense of
how to use iflex with its parser generator counterpart, iyacc. In general, in a
desktop calculator program the user types in complex formulas and the
calculator evaluates them and prints out the answer. First things first: what

 4

are the words of this little language? Numbers, math operators, and variable
names. A number is one or more digits followed by an optional decimal
point and one or more digits. In regular expressions, you can write this as

[0-9]+(\.[0-9]*)?

The 0 through 9 is specified with a range using a dash for characters within
the square brackets. The plus sign means one or more occurrences, whereas
the star means zero or more occurrences. The backslash period means
literally match a period; without a backslash a period matches any single
character. The parentheses are used for grouping and the question mark
means zero or more times. The math operators are simple “words”
composed of one character such as the plus sign, minus sign, and star for
multiplication. Variable names need to be meaningful; so why not let them
be any combination of letters, digits, and underscores. You do not want to
confuse them with numbers, so refine the definition by making sure that
variables do not begin with a number. This definition of variable names
corresponds to the following regular expression:

[a-zA-Z_][a-zA-Z0-9_]*

Here is some more information about the three sections that make up an iflex
program. The definitions section contains Icon code that is copied verbatim
into the generated final program, before the generated scanner code. You can
put $include statements there to define symbolic constants for the different
kinds of words in your scanner. The rules section contains a series of rules,
composed of two parts: a regular expression and a fragment of Icon code
that executes whenever that regular expression matches part of the input.
The procedures section contains arbitrary code that is copied verbatim after
the generated scanner’s code. A complete scanner specification for the
desktop calculator looks like:

 5

%{
y_tab.icn contains the symbol definitions for integer values
representing the terminal symbols NAME, NUMBER, and
ASSIGNMENT. It is generated with iyacc ? d calc.y
$include y_tab.icn
%}
letter [a-zA-Z_]
digiletter [a-zA-Z0-9_]
%%
{letter}{digiletter}* { yylval := yytext; return NAME }
[0-9]+(\.[0-9]+)? { yylval := numeric(yytext); return NUMBER }
\n return 0 /* logical EOF */
``:='' return ASSIGNMENT
[\t]+ ; /* ignore whitespace */
. return ord(yytext)
%%

There are a couple of details about iflex worth noting in this scanner. The
iflex tool maintains a global variable named yytext that holds the characters
that match a given regular expression. For example, a plus operator is
returned by the scanner rule that says to return the character code
corresponding to yytext, ord(yytext), on the regular expression that consists
of a lone period (. matches any one character). Even if yytext is not part of
yylex()’s return value for a token, there are situations in which the string is
of interest to the parser, which reads lexical values from a global variable
called yylval. When a variable name is encountered, it makes sense to copy
yytext over into yylval. On the other hand, when a number is encountered,
the numeric value corresponding to the characters in yytext is computed and
stored in yylval. Since Icon allows a variable to hold any type of value, there
is no need for a union or some other messy construct to handle the fact that
different tokens have different kinds of lexical values.

Before you conclude your study of iflex, two subtle points are worth
knowing. The matches allowed by a list of regular expressions are often
ambiguous, and this is normal and healthy. For example, does count10
match a variable name and then an integer, or just one variable name? The
iflex tool matches the longest substring of input that can match the regular
expression. So it matches count10 as one word, which is a variable name in
this case. There is one more sticky point: what if two rules match the exact
same input characters, with no longest match to break the tie? In this case,
iflex picks the first rule listed in the specification that matches, so the order
of the rules can be important.

 6

 7

Appendix: A Summary of the Regular Expression Operators:

This list the most commonly used operators in iflex. Advanced users will
want to consult the documentation for flex or its predecessor, lex, for a more
complete list.

Commonly used iflex operators

Operator Description

. Matches any single character except the newline character.
* Matches zero or more occurrences of the preceding expression.

[]

This is a character class that matches any character within the
brackets. If the first character is a caret (^), then it changes the
meaning to match any character except those within the
brackets. A dash inside the brackets represents a character range,
so [0-9] is equivalent to [0123456789].

^ Matches the beginning of a line. This interpretation is used only
when the caret is the first character of a regular expression.

$ Matches the end of a line. This interpretation is used only when
the dollar symbol is the last character of a regular expression.

\ Used to escape the special meaning of a character. For example,
\$ matches the dollar sign, not the end of a line.

+ Matches one or more occurrences of the preceding expression.
For example, [0-9]+ matches “̀ `1234''” or “734,” but not the
empty string.

? Matches zero or more occurrences of the preceding expression.
For example, -?[0-9]+ matches a number with an optional
leading negative sign.

| Matches either the preceding regular expression or the one
following it. So Mar|Apr|May matches any one of these three
months.

“… ” Matches everything in quotes literally.
() Groups a regular expression together, overriding the default

operator precedence. This is useful for creating more complex
expressions with *, +, and |.

 8

References

[Jeffery00] Jeffery, C., Mohamed, S., Pereda, R. and Parlett, R.,

Programming with Unicon: very high-level object-oriented
application and system programming. To be published.

[Lesk75] Lesk, M. E., and Schmidt, E. LEX – Lexical Analyzer

Generator, Computer Science Technical Report No. 39, Bell
Laboratories, Murray Hill, New Jersey (October 1975).

[Levine92] Levine, J. R., Mason, T., and Brown, D. Lex & Yacc, O’Reilly

and Associates, Cambridge, Massachusetts, 1992.

[Paxson95] Paxson, Vern, flex – a fast lexical analyzer generator, many

replication on the Internet. Also available on Redhat Linux via
the man command.

[Pereda00] Pereda, Ray, iyacc – a Parser Generator of Icon, Unicon

Technical Report 00-01, University of Nevada, Las Vegas, Las
Vegas, Nevada, (February 2000).

